Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Heliyon ; 9(2): e12584, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2248607

ABSTRACT

Nitrogen dioxide (NO2) is the most active pollutant gas emitted in the industrial era and is highly correlated with human activities. Tracking NO2 emissions and predicting their concentrations represent important steps toward controlling pollution and setting rules to protect people's health indoors, such as in factories, and in outdoor environments. The concentration of NO2 was affected by the COVID-19 lockdown period and decreased because of restrictions on outdoor activities. In this study, the concentration of NO2 was predicted at 14 ground stations in the United Arab Emirates (UAE) during December 2020 based on training over a full time period of two years (2019-2020). Statistical and machine learning models, such as autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), long short-term memory (LSTM), and nonlinear autoregressive neural network (NAR-NN), are used with both open- and closed-loop architectures. The mean absolute percentage error (MAPE) was used to evaluate the performance of the models, and the results ranged from "very good" (MAPE of 8.64% at the Liwa station with the closed loop) to "acceptable" (MAPE of 42.45% at the Khadejah School station with the open loop). The results show that the predictions based on the open loop are generally better than those based on the closed loop because they yield statistically significantly lower MAPE values. For both loop types, we selected stations exhibiting the lowest, medium, and highest MAPE values as representative cases. In addition, we demonstrated that the MAPE value is highly correlated with the relative standard deviation of NO2 concentration values.

2.
Heliyon ; 9(2), 2022.
Article in English | Europe PMC | ID: covidwho-2238454

ABSTRACT

Nitrogen dioxide (NO2) is the most active pollutant gas emitted in the industrial era and is highly correlated with human activities. Tracking NO2 emissions and predicting their concentrations represent important steps toward controlling pollution and setting rules to protect people's health indoors, such as in factories, and in outdoor environments. The concentration of NO2 was affected by the COVID-19 lockdown period and decreased because of restrictions on outdoor activities. In this study, the concentration of NO2 was predicted at 14 ground stations in the United Arab Emirates (UAE) during December 2020 based on training over a full time period of two years (2019–2020). Statistical and machine learning models, such as autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), long short-term memory (LSTM), and nonlinear autoregressive neural network (NAR-NN), are used with both open- and closed-loop architectures. The mean absolute percentage error (MAPE) was used to evaluate the performance of the models, and the results ranged from "very good” (MAPE of 8.64% at the Liwa station with the closed loop) to "acceptable” (MAPE of 42.45% at the Khadejah School station with the open loop). The results show that the predictions based on the open loop are generally better than those based on the closed loop because they yield statistically significantly lower MAPE values. For both loop types, we selected stations exhibiting the lowest, medium, and highest MAPE values as representative cases. In addition, we demonstrated that the MAPE value is highly correlated with the relative standard deviation of NO2 concentration values. Highlights • To our knowledge, this is the first to perform the predictive analysis (forecasting) of atmospheric NO2 concentrations using actual measurement data from multiple ground stations in the UAE.• We applied open- and closed-loop architectures to predict NO2 concentrations using statistical and machine learning models and achieved results ranging from "very good” to "acceptable”.• The prediction of NO2 concentrations for certain stations in the UAE was challenging due to the effect of COVID-19 in the lockdown period, which caused decreases in NO2 levels.• Rural areas, such as Liwa, were unaffected by the COVID-19 lockdown. For the Liwa station, very good results were achieved compared to those at the urban-area Khadejah School station.

3.
Sci Rep ; 12(1): 18144, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2096792

ABSTRACT

NO2 and nitric oxide (NO) are the most reactive gases in the atmosphere. The interaction of NOx molecules with oxygen, water and other chemicals leads to the formation of acid rain. The presence of NO2 in the air affects human health and forms a photochemical smog. In this study, we utilize wavelet analysis, namely, the Morlet wavelet, which is a type of continuous wavelet transform, to conduct a spectral analysis of the periodicity of nitrogen dioxide (NO2). The study is conducted using data from 14 weather stations located in diverse geographic areas of the United Arab Emirates (UAE) over a period of two years (2019 and 2020). We explain and relate the significance of human activities to the concentration level of NO2, particularly considering the effect of the COVID-19 lockdown to the periodicity of NO2. The results show that NO2 concentrations in desert areas such as Liwa and Al Quaa were unaffected by the lockdown period (April-July 2020) resulting from the COVID-19 pandemic. The other stations in the urban areas of Abu Dhabi city, Al Dhafra and Al Ain, showed a reduction in NO2 during the lockdown. NO2 is more highly concentrated during winter seasons than during other seasons. The periodicity of NO2 lasted from a few days up to 16 days in most regions. However, some stations located in the Al Dhafra region, such as Al Ruwais and the Gayathi School stations, exhibited a longer period of more than 32 days with a 0.05 significance test. In the Abu Dhabi region, NO2 lasted between 64 and 128 days at the Al Mafraq station. The correlation between the NO2 concentration across several ground stations was studied using wavelet coherence.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Nitrogen Dioxide/analysis , Nitric Oxide/analysis , Wavelet Analysis , United Arab Emirates , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis
4.
J Pers Med ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1417165

ABSTRACT

Human civilization is experiencing a critical situation that presents itself for a new coronavirus disease 2019 (COVID-19). This virus emerged in late December 2019 in Wuhan city, Hubei, China. The grim fact of COVID-19 is, it is highly contagious in nature, therefore, spreads rapidly all over the world and causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Responding to the severity of COVID-19 research community directs the attention to the analysis of COVID-19, to diminish its antagonistic impact towards society. Numerous studies claim that the subcontinent, i.e., Bangladesh, India, and Pakistan, could remain in the worst affected region by the COVID-19. In order to prevent the spread of COVID-19, it is important to predict the trend of COVID-19 beforehand the planning of effective control strategies. Fundamentally, the idea is to dependably estimate the reproduction number to judge the spread rate of COVID-19 in a particular region. Consequently, this paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers. More specifically, we use various models (for example, susceptible infection recovery (SIR), exponential growth (EG), sequential Bayesian (SB), maximum likelihood (ML) and time dependent (TD)) to estimate the reproduction numbers and observe the model fitness in the corresponding data set. Experimental results show that the reproduction numbers produced by these models are greater than 1.2 (approximately) indicates that COVID-19 is gradually spreading in the subcontinent.

SELECTION OF CITATIONS
SEARCH DETAIL